Section 10.4.7, “Constraint 3: Take-off Ground Run Constraint”, page 156

The equation for the required thrust to weight ratio should read:

\[
\frac{T}{W} = 1.21 \frac{W/S}{\rho C_{Lmax} g d_{GR}} + \frac{1}{2} \frac{C_{D}}{C_{L}} + \frac{1}{2} \mu_{TO}
\]

Note the appearance of the maximum lift coefficient in the take-off configuration – this comes from the link between the required lift-off speed being linked to the stall speed:

\[
V_{R} = 1.1 V_{S}^{TO} = 1.1 \sqrt{\frac{2W/S}{\rho C_{Lmax}}}
\]

The corresponding Python code snippet (including the maximum lift coefficient, which did not feature in the original equation) is now superseded by the take-off constraint calculation in ADRpy, a new library of aircraft conceptual design tools. See the documentation for the code for more details on specific constraint calculations, including the take-off constraint.

Section 10.4.7, “Combined Constraint Diagram”, page 160

The new, corrected and enhanced constraint analysis can now be found in this notebook. Instead of the combined constraint diagram for thrust to weight on page 160, the reader should use the one generated in the notebook:

Note that both the take-off run and climb plots have been updated. The climb constraint was simply incorrectly plotted in the original book (the correct climb constraint was shown in Section 10.4.7, “Constraint 2: Rate of Climb”). The final engine power constraint diagram (Figure 10.6) is then:
Section 13.6.3 “Analyzing Decode-1 with XFLR5: Stability”, page 224

The equation for Cma is missing a trailing bracket.

Section 13.6.3 “Analyzing Decode-1 with XFLR5: Stability”, page 227

There is a typo in Table 13.2: pPhugoid -> Phugoid